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Abstract 
In this paper, we derive tracking control laws for non- 
minimum phase nonlinear systems with both fast and 
slow, possibly unstable, zero dynamics. The fast zero 
dynamics arise from a perturbation of a nominal sys- 
tem. These fast zeros can be problematic in that they 
may be in the right half plane and may cause large mag- 
nitude tracking control inputs. In this paper, we com- 
bine the ideas from recent work of Hunt, Meyer, and Su 
with that of Devasia, Paden, and Chen on an asymp- 
totic tracking procedure for nonminimum phase nonlin- 
ear systems. We give (somewhat subtle) conditions un- 
der which the tracking control input is bounded as the 
magnitude of the perturbation of the nominal system 
becomes zero. Explicit bounds on the control inputs 
are calculated using some interesting non-standard sin- 
gular perturbation techniques. The method is applied 
to the simplified planar dynamics of VTOL and CTOL 
aircraft. 

Keywords: Nonlinear control, zero dynamics, exact 
and asymptotic tracking, nonminimum phase, singular 
perturbation. 

1 Introduction 
In this paper, we discuss tracking using bounded inputs 
for nonlinear nonminimum phase systems with “fast 
zero dynamics”. While exact and asymptotic tracking 
for nonlinear minimum phase systems has now been 
well understood for some time (see [l] for a comprehen- 
sive discussion), tracking for nonminimum phase non- 
linear systems has been a tougher nut to crack. Early 
progress was made by the nonlinear regulator approach 
of Isidori-Byrnes [2] which extended to  the nonlinear 
case results of the Francis-Wonham regulator. A ma- 
jor advance in a general framework for tracking for non- 
minimum phase systems was made by Devasia, Paden 
and Chen [3], [4] in which they provide a non-causal ex- 
act tracking compensator for nonlinear (possibly multi- 
input multi-output) systems. These results generalize 
the earlier results of Lanari and Wen [5] for linear time 
invariant systems. 

In parallel, we have been interested in the control of 
MIMO nonlinear systems where the decoupling ma- 
trix is close to  being singular. We were heavily mo- 
tivated in this regard by the flight control of a Verti- 
cal Take Off and Landing aircraft (VTOL) Harrier in 
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[6]. For systems such as this, the presence of the small 
control terms not only meant large control effort, but 
was symptomatic of “fast zero dynamics” which were 
possibly nonminimum phase. We explained this phe- 
nomenon in [7] as a singular perturbation of the zero 
dynamics and discussed approximate methods for con- 
trolling the zero dynamics. Related methods are pre- 
sented in [8] and [9]. In new work on the problem of sta- 
ble tracking for MIMO systems with fast zero dynam- 
ics, we attempted in [lo] to apply the Devasia-Paden- 
Chen techniques to  a model of a Conventional Take Off 
and Landing (CTOL) aircraft and make comparisons 
with the other approximate techniques discussed above. 
The difficulty that we encountered was the presence 
of large magnitude control inputs in directly applying 
the Devasia-Paden-Chen scheme. More recently, Hunt, 
Meyer and Su in [ll] and [12] proposed an interesting 
variant to the application of the Devasia-Paden-Chen 
scheme by applying the method not to  the given sys- 
tem, but to an “error system” obtained by comparing 
the given system to a nominal version of the system, 
which does not have the fast zero dynamics. 

Our paper attempts to  close the loop on this entire 
circle of ideas and to provide a reasonably complete’ 
description of conditions under which bounded track- 
ing control laws for nonlinear control systems with fast 
zero dynamics exist (in the limit that the perturbation 
of the system dynamics goes to zero). The paper con- 
siders a general class of invertible (but not necessarily 
under static state feedback) nonlinear systems and as 
such is a generalization of the results in [ll]. Unlike 
[ll], we consider only systems which are affine in the 
inputs, yet this allows us to  derive conditions under 
which bounded tracking may be proved and to  work 
out the details of explicit bounds on the system in- 
puts. What is striking about the current paper is the 
delicacy of the asymptotic calculations involving many 
interesting concepts from singular perturbations and 
differential equations. 

The outline of this paper is as follows. In Section 2, we 
consider SISO systems: we review the characterization 
of the fast zero dynamics and the Devasia-Paden-Chen 
scheme and show how these can be combined to pro- 
duce bounded tracking control laws for the SISO case. 
Section 3 applies the theory to two MIMO flight control 
examples, planar models of VTOL and CTOL aircraft. 

~~ 

‘We say reasonably, because we have some single time scale 
assumptions on the “fast” zero dynamics, which we would like 
to eventually remove. 
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Section 4 presents the conclusions. A longer version of 
this paper, containing a proof of Theorem 1, a detailed 
characterization of the zero dynamics for the MIMO 
case, and more examples, is available in [13]. 

2 Bounded Tracking for SISO sys tems 

In this section, we wil!l be concerned by a family of sys- 
tems depending on a parameter E ,  described by equa- 
tions of the form 

where f (2, E )  and the columns of g(x, E )  are smooth 
vector fields and h(o, E )  is a smooth function, defined 
in a neighborhood of (zo, 0) in R" x Iw, . We will refer 
to the system of (1) with E = 0 as the nominal system 
and with E # 0 as the perturbed system. We will assume 
that x = xo is an equilibrium point for the nominal sys- 
tem, that is f (z0,O) =: 0,  and without loss of generality 
we will assume that h(x0, 0) = 0. 

2.1 Singularly Perturbed Driven Dynamics  
In [7] it was shown that if the system (1) has relative 
degree T ( E )  = T for E # 0, and relative degree T ( E )  = 
T + d for E = 0, then there are fas t  t ime  scale zero 
dynamics for the perturbed nonlinear system. This is 
in itself a rather surprising conclusion: we review one 
such result from these papers. As a consequence of the 
definition of relative degree we have that T ( E )  = T and 
~ ( 0 )  = T + d implies that VE # 0 

Lgh(z, E )  = L,Lfh(Z, E )  = . . * = L,L'f%(x, E )  = 0 
Vx near 20, and LgLj-'h(xo,E) # 0 

(2) 
and for E = 0, 

Lgh(x, 0) = LgLfh(:c, 0) = * .  . = L g LT+d-2 f h(z,O) = 0 

(3) 
Vx near 20, and LgL;+d-lh(x~,O) # 0 

To keep the singular1.y perturbed zero dynamics from 
demonstrating multiple tame scale behavior2 we assume 
that for 0 5 IC 5 d 

L,L;-l+"(z, E )  = E d - - k a g ( x ,  E )  (4) 

where each ak(x, E )  is a smooth function of (x, e )  in a 
neighborhood of (xo, 0). The choice of LgLj-lh(z,  E )  = 
0 ( c d )  rather than O ( E )  is made to keep from having to 
use fractional powers of E .  What is critical about the as- 
sumption (4) is the decreasing powers of E dependence 
as IC increases from 0 to d. 

As is standard in tlhe literature, we will denote by 
E RT+d the vector corresponding to the f i rs t  T + d 

2This is an interesting case and though it is no different con- 
ceptually, the notation and the details of the assumptions needed 
are more involved. 

derivatives of the output of the system in (l), given by 

( 5 )  

where the first T coordinates correspond to  the first 
T derivatives of the output, and the full set of T + d 
coordinates, a t  E = 0, are the first T + d derivatives of 
the output of the nominal system. It was shown in [7] 
that for small E we have the following "normal form" 
(in the sense of [l]): 

t.1 = E2 

E2 = t 3  

ET+< = b('$9 11, €1 + 7, 
rl = ! I ( t , % E )  

Here, we have introduced the smooth functions a, b, 
and q; the details of how a and b depend on f, 9,  and 
h are discussed in [7]. 

Using the change of coordinates for the perturbed sys- 
tem given by 

z1 = [ T + 1 >  Z 2 = E [ T + 2 ,  . ' . zd = Cd-'<T+d (7) 

it may be verified that the zero dynamics (correspond- 
ing to the output of the perturbed system being held 
identically to zero) have the form 

€21 = -2.21 +z2 
E &  = - 2 2 1  +z3 

Note that q E .z E Rd.  Also, we have abused 
notation for q from equation ( 6 ) .  Thus, the zero dy- 
namics appear in singuLarly perturbed form, ie. 

(9) 
E i =  T(Z,V,E) 
4 = Q ( Z , V , E )  

with n - T - d slow states ( q )  and d fast states (z). 
This is now consistent with the zero dynamics for the 
system at E = 0 given b y  

il == d o ,  7 7 1  0 )  (10) 

Thus, the presence of small terms in L LT-l+kh(x,~) 
for 0 5 IC 5 d ,  causes the presence of singularly per- 
turbed zero dynamics. The Jacobian matrix evaluated 

9 .  f 
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at  z = O , E  = 0 of the fast zero subsystem is obtained 

Here a, = - a ( < , q , ~ )  for 1 5 i < d ,  and a d  = 
-A([, 71, E ) .  It is clear that the perturbed system may 
be nonmanimum phase either for positive E ,  negative E ,  
or both positive and negative E (according to  whether 
the matrix in (11) has eigenvalues in @-, @+ or has 
indefinite inertia, respectively). If (10) has a stable 
equilibrium point a t  the origin (corresponding to  the 
nominal system being minimum phase), but the ori- 
gin of the system (8) is unstable, (corresponding to  the 
perturbed system being nonminimum phase), we refer 
to these systems as slightly n o n m i n i m u m  phase. 

We will need to  generalize the preceding discussion of 
zero dynamics to  the driven dynamics corresponding 
to  the problem of tracking a desired output trajectory 
y o ( t ) .  If the output y ( t )  E y D ( t ) ,  it follows that, for 
the perturbed system, 

'YO 

'YO 

2.2 Two Step Procedure for Bounded Tracking 
For systems of the form (l), difficulties with bounded 
tracking, that  is the problem of finding bounded con- 
trol laws for making y ( t )  track a prescribed bounded 
trajectory (with its first r + d derivatives also 
bounded) may arise for two reasons: 

1. 

2. 

The nominal system may be nonminimum 
phase. This means that the zero dynamics (10) 
of the nominal system are unstable. 
The presence of terms of o(&) for 
L L ' - ' h (x ,~ )  for the perturbed system. 
This, in turn, may cause two different kinds of 
problems: 

g .  f 

(a) T h e  (exact) tracking control law given by 
(15) m a y  become unbounded as E 4 0.  

(b) T h e  fas t  t ime  scale zero dynamics of the  per- 
turbed sys tem are likely t o  be n o n m i n i m u m  
phase as noted in the discussion following 

In this subsection, we combine some interesting new 
results of Devasia, Paden and Chen [3], [4] on output 
tracking using bounded inputs for nonlinear systems 
with hyperbolic3 (but not necessarily minimum phase) 
zero dynamics, with a two step procedure suggested 
by Hunt, Meyer and Su in [ll] and [12] which we use 
to  derive conditions for boundedness of the tracking 
control law (15). The algorithm proceeds in two steps: 

Step 1: One finds a bounded input to  cause the nom-  
inal system to track y o ( t ) .  If the nominal system is 
nonminimum phase, the algorithm of Devasia-Paden- 
Chen is applied, as follows. The nominal system with 
relative degree r + d has driven dynamics given by 

(11). 

with 77 E Rn-T-d and ED given by (12). The Devasia- 
Paden-Chen scheme (time invariant version) consists of 
defining a linear approximant to  the smooth function 
q, usually 

and then under the hypothesis that Q is hyperbolic 
(i.e it has no eigenvalues on the jw axis) and that the 
residual error defined by r ( < D ,  r ] ,  0) := q(ED, q,O) - Qq 
is Lipschitz continuous in both of its arguments, a con- 
dition referred to  as locally approximately linear: 

l ~ ~ ~ 1 , 7 1 1 , ~ ~ - ~ ~ l ~ 2 , 7 1 2 , ~ ~ l  <KlIEl -C21+K2l711 -7121 

with Lipschitz constants K1, K2 small enough, there 
exists for given bounded t'~ a bounded solution q( t )  
satisfying limt++cov(t) = 0, which is obtained as the 
fixed point of the following integral equation: 

71(t) = jm @(t - T)T(ED,  71, Old7 (17) 
--03 

Here @(t) is the Caratheodory solution of the matrix 
differential equation 

x = Q X  X(i-CO) = 0 X(O+) - X ( 0 - )  = I 

Furthermore, one can find K3 such that 

177(t)l 5 K3 S U P  IED( t ) l  
t 

The strategy for solving the fixed point equation (17) 
is to  use a Picard Lindelof iteration scheme with any 
initial guess qO(t )  : -CO < t < CO, 

q"+'(t) = @(t - z r ) r ( ~ ~ , r ) ~ , O ) d ~  
--03 

3More precisely, in the slowly time varying case, kinematically 
equivalent to uniformly hyperbolic 
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The resulting controller is synthesized by using the 
bounded q( t )  to obtain 

A drawback of this control law is that it is non-causal. 
One way this is remedied is to use a preview of a certain 
duration. Also, while the algorithm as stated is used 
for exact tracking, asymptotic tracking is achieved by 
stabilizing the linearization of the system (1). Thus, 
for small enough ED and ( x (0 )  - ZO), bounded tracking 
is achieved using a non-causal input. A time varying 
version of the algorithm [4] may be used to linearize 
equation (16) about to produce a time varying 
matrix 

If Q ( t )  is slowly timle varying, and is kinematically 
equivalent to a two-block diagonal matrix with an ex- 
ponentially stable and an exponentially unstable state 
transition matrix (uni formly  hyperbolic) the Picard it- 
eration can be applied as before. 

Step 2: Denote by uo(t) the input (18) required to 
produce exact tracking with bounded inputs for the 
nominal system and let the resultant state trajectory 
be given by S o ( t ) , T o ( t ) .  That is, 

0 
Y D  (.) - - E: = [,+I 

iro+l = t:+2 
y('+l) = 

yg+d) = 

- 
YD - i ; + 2  = C + 3  

b(EO 7 VO, 0) + .(E0 , oo, O b 0  

(19) 

Now, define the input u(t)  for the perturbcd system for 
exact tracking. The system equations are given by the 
equations (6). Note that the first T coordinates of the 
perturbed system match those of the nominal system. 
To obtain the control u(t)  for the perturbed system, 
the expression for j,. from ( 6 )  is equated with that of 
<,O from (19). Also, define as before 

Subtracting equations! (19) from equations (6) yields an 
algebraic equation for the control, namely: 

and an error system 

€61 = 212 + a1 ( E ,  o, E)V1 
€62 = 'U3 + az(l,  7, E)W1 

6n-7. = qn-r-d(E,  V ,  f )  - Qn--r-d(EO, ?lo, 0) 
One now applies the Devasia-Paden algorithm [4] to the 
system of (21) to find the bounded control u(t)  for exact 
tracking. For the purpose of applying this algorithm, it 
is necessary to consider the linear approximant to  the 
right hand side of (21). This is conveniently chosen to 
be 

... 
w t O , s O s o  adtO,sO,o) 

- ac a7 

The matrix in (22) is a time varying one: the time de- 
pendence of Eo,oo has been dropped for brevity. To 
apply the results of Devasia-Paden to  this system we 
need to assume that it is slowly varying in time and 
kinematically equivalent t o  a uniformly hyperbolic ma-  
trix. One convenient w ~ y  to  do this is to assume that 
the nominal trajectory y ~ ,  and i ts  f irst  T + d derivatives 
are small enough and that the func t ions  ai ,  1 5 i 5 d 
are Lipschitz continuous in their arguments. 

Thus for fixed E > 0, the control law U calculated in 
(20) is bounded. What is less clear is the magnitude 
of the control law as E -+ 0. The following theorem 
gives conditions under which the control law remains 
bounded as E 4 0. The proof is available in [13]. 

(22) 

Theorem 1 (Bounded Tracking as e -+ 0 )  
Assuming that: the d r h e n  dynamics of the  nominal 
sys tem (16) is hyperbolic and slowly t i m e  varying; 
the error sys tem (21) 1:s hyperbolic, and each func-  

smooth and slowly t ime  varying; and, an addition, the 
functions ai(( ,  77, E) in the Jacobian (22) satisfy the fol- 
lowing Lipschitz condition: 

!?!!&Ad, %E& in the Jacobian (22) is 
t i on  ai([, o, E ) ,  as 

I%('$1,V1,~) - adt2,v2,0)l I 

Li,d+l(E)I% - $ 1  + . . . + Li,n-.(410n-.-d - %-.-dl 

(23) 

L i , 1 ( M + ;  - E,2+11 + * . *  + L i , d ( E ) l E F + d  - E;+di+ 
1 

where 

L i , j ( ~ )  = o(E~+') i =: 1,. . . , d , j  = 1,. . . , d  
L ~ , J ( E )  = i =: 1,. . . , d , j  = d + 1 , .  . . , n - T 

(24) 
then, under  these assum.ptions, the input  u( t )  required 
f o r  exactly tracking a desired output signal yD(t) with 
bounded derivatives (all su f ic ien t ly  small), is bounded 
as E -+ 0.  
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The derivation of the singularly perturbed zero and 
driven dynamics for the MIMO counterpart of (1) is 
presented in [13]. 

3 Flight Control Examples 
Our examples are motivated by our study of flight con- 
trol for vertical take off and landing (VTOL) and con- 
ventional take off and landing (CTOL) aircraft, in [6] 
and [lo]. These are two-input two-output systems in 
which the nominal systems have no zero dynamics. 

3.1 PVTOL Aircraft 
We consider a model of a planar vertical takeoff and 
landing (PVTOL) aircraft, an example being the YAV- 
8B Harrier of the McDonnell Douglas Corporation. 
The simplified PVTOL equations, corresponding to the 
aircraft in the hover mode, derived in [6], are 

x, = x2 
x2 = - sinx5u1+ E' cosz5u2 
x3 = x4 (25) 
x4 = cos x5u1+ c2 sin x5u2 - 1 
x 5  = 2 6  

j.6 = U2 

where X I  = x, x3 = y, x5 = 8. Note that we have 
used c2 in the equations instead of the standard E. We 
choose the standard outputs y1 = X I ,  yz = x3. 

The vector relative degree is well defined for the per- 
turbed system: 

T I ( € )  E s = 2 
T ~ ( E )  E r = 2 

At E = 0, the system (25) does not have vector rel- 
ative degree. The zero dynamics manifold of the un- 
perturbed system is trivial, and the two time scales 
assumption is satisfied. 

The singularly perturbed zero dynamics are given by 

where z1 = 25  and zz = €26.  

The bounded inputs required for the nominal system 
to track and are calculated as: 

CO - 22 0 - 0 (4) 0 (4) 
1 - 6u1 Sinz5yD1 + c0s"5YD2 (27) 

U: = - 2 z ~ ' i L ~ / u ~  - ygj cosxg/uy - y g i  sinxg/uy (28) 

The control law U = [u1 u2] for the perturbed system 
is calculated by solving the differential equations 

E211 = v'2 
€212 = U: sin w1 - e2u: 

where 

and by solving the algebraic equation 

The control 

U1 = U: sin xg + c2 cos(w1 + xg)u2 
(33) sin(v1 + xg) 

is bounded as E -i 0. The proof does not follow directly 
from Theorem 1, because the form of (29) is not in 
the standard "quasi-linear'' form of (21). We maintain 
the appealing simplicity of (29) and use the following 
proposition, the proof of which is available from the 
authors. 

Proposition 2 Consider the nonlinear differential 
equation (34) 

x = Ax + +(z) + e2w (34) 
in which A E Rnxn is hyperbolic and .II, belongs to a 
class of functions called Lip(r) in [l4]: 

I x l< r  
SUP l+(z)I 5 L(r)IxI 

and L is a continuous, nondecreasing, nonnegative 
function on [ O , c a )  with L(0) = 0. Then if 6 is small 
enough the unique bounded solution of (34) is of O(c2) .  

3.2 CTOL Aircraft 
The second aircraft model we consider is the planar 
conventional take off and landing (PCTOL) aircraft 
introduced in [lo]. The simplified PCTOL equations 
are 

2 ,  = 2 2  

kz = 
x 3  = IC4 (35) 
i 4  

( -D + u1) cOSZ5 - ( L  - e2u2) sin z5 

(-D + u1) sin x5 + ( L  - e2u2) cos z5 - 1 = 
k5 = z 6  

j.6 = U2 

where z1 = x, z3 = y,  z5 = 8. Unlike the example of 
the hovering VTOL, we now have aerodynamic forces: 
L and D ,  the aerodynamic lift and drag forces given by 

L = aL(x;+X~)(l+CQI)  (36) 
D = u ~ ( x ;  + ~ : ) ( 1  + b(l +.a)') (37) 

and Q! is the angle of attack 

a = z5 - tan- '(q/zz) (38) 
The coordinates are illustrated in Figure 1. The angle 
of attack a is assumed to be zero for these calculations. 
The outputs are y1 = X I ,  y2 = z3. 

The vector relative degree is well defined for the per- 
turbed system: 

TI(€) s = 2 
T2(E) T = 2 
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Figure :L: PCTOL aircraft 

At E = 0, the system (35) does not have vector rel- 
ative degree. The zero dynamics manifold of the un- 
perturbed system is t,rivial, and the two time scales 
assumption is satisfiedl. The singularly perturbed zero 
dynamics are given by 

Eil = 22 (39) 
€22 = - cos z1 (40) 

where z1 = x5 and 22  = 6x6. Note that we have again 
used a non-standard form for simplicity. The bounded 
inputs required for the nominal system to track 901 and 
Y D ~  are calculated as in the PVTOL case by dynamic 
extension. The calculations are more involved because 
of the presence of the lift and drag and are available 
from the authors. As before, they result in bounded 
values for U! and U!. The control law U = [UI UZ] 
for the perturbed system is calculated by solving the 
differential equations 

~ i r l  = 212 (41) 
0 0 

E& = u1 sin v1 - D sin VI - Lo cos w l  + L - E'U; (42) 

where 

s i n q  = -&(e2u2 - L + Do s i n q  + Lo c o s s )  
212 = E ( X 6  - 35;) 

(43) 
and Lo, Do correspond to the aerodynamic lift and 
drag at E = 0. 

The control 
1 

E2 
u2 = -(U: sinvl t L - Do sinvl - Lo cosv1) (44) 

u1 = cos-1 (v1 + x : ) (  (U: - Do)  cos x: - Lo sin z: 
+D cos(v1 + z:) + ( L  - E'u~)  sin(w1 + z:)) (45) 

is bounded as E + 0. The proof follows from Proposi- 
tion 2. 

4 Conclusions 
This work presents a method for tracking systems with 
singularly perturbed zero dynamics. We combined re- 
cent results in exact tracking by Devasia, Paden, and 
Chen, and Hunt, Meyer, and Su, with a general frame- 
work for describing nlonlinear nonminimum phase sys- 
tems with singularly perturbed zero dynamics. Using 

this framework, we prove boundedness of the control 
inputs required for exact tracking. We showed, using 
planar dynamic models of VTOL and CTOL aircraft, 
that this method may be successfully applied to  the 
slightly nonminimum phase systems characteristic of 
flight control. 
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